Gauge Coupling Unification in Heterotic String Models with Gauge Mediated SUSY Breaking

Phys.Rev. D83 (2011) 075008; Work with Prof. Stuart Raby

Archana Anandakrishnan

The Ohio State University

August 28, 2011

SUSY 2011, Fermilab, IL.

Motivation

In string theories with compactified extra-dimensions, there generically exist extra non-standard model particles, usually called "exotics".

To mediate SUSY breaking with vector-like "exotic" particles arising from heterotic string theory, and produce a "consistent" low-energy spectrum.

Mini-Landscape Search¹

- Search for MSSM spectrum at low energies starting with $E_8 \times E_8$ heterotic string models compactified on the orbifold, T^6/\mathbb{Z}_6
- Look for GUTS with the Standard Model Gauge group embedded

$$E_8\supset E_6\supset SO(10)\supset SU(5)\supset G_{SM}$$

- Spectrum: Three families + Vector-like "exotics"
- 15 models with promising phenomenology.

Gauge Coupling Unification

• Gauge Coupling Unification was studied in 2 of these 15 models in the current work and earlier².

Model 1 and Model 2A

- \bullet This required some of the vector-like exotics to be massive at less than 10^{15} GeV.
- Solutions were constrained by the value of proton lifetime in these models.

$$au(
ho
ightarrow \pi^0 e^+) ~\gtrsim~ 10^{34} \ \mathrm{yr}^*$$

* Current bound from Super Kamiokande.

Matter Content and Energy scales

• $\vec{n} = (n_3, n_2, (n_1, n_1'))$ defines the 'light' exotic matter content of the theory.

$$n_3 \times \left[(3,1)_{1/3} + (\overline{3},1)_{-1/3} \right] + n_2 \times \left[(1,2)_0 + (1,2)_0 \right] + n_1 \times \left[(1,1)_1 + (1,1)_{-1} \right]$$

- M_{EX1} Mass scale of the triplet exotics.
- M_{FX2} Mass scale of the doublet exotics.
- \bullet M_C The compactification scale of the extra-dimensions.

The singlets are allowed to be massive either at M_{EX1} or M_{EX2} .

Heterotic Theory on Orbifold

^{*}Figure not drawn to scale.

4D MSSM

^{*}Figure not drawn to scale.

4D MSSM

^{*}Figure not drawn to scale.

Gauge Coupling Unification

Gaugino Masses

• The gauginos obtain mass at one loop from the exotics:

$$M_i = b_i^{EX3} \frac{\alpha_i}{4\pi} \frac{F^{\phi}}{M_{EX1}} + b_i^{EX2} \frac{\alpha_i}{4\pi} \frac{F^{\phi}}{M_{EX2}}$$

The two exotic scales give rise to non-universal gaugino masses.

The gravitino contribution is sub-dominant when:

$$\frac{F^{\phi}}{M_{EX}} >> m_{3/2}^*$$

$$b^{EX3} = (n_3, 0, \frac{n_3 + 3n_1}{10})$$
 $b^{EX2} = (0, n_2, \frac{3n'_1}{10})$

^{*} Anomaly contributions to gaugino masses were considered in a recent analysis.

Scalar Masses

• The scalars obtain mass at two-loops:

$$\begin{split} m_{\phi_i}^2 &= m_{3/2}^2 + 2 \left(b_3^{EX3} \; \frac{\alpha_3}{4\pi} \frac{F^\phi}{M_{EX1}} \right)^2 C_3(i) + 2 \left(b_2^{EX2} \; \frac{\alpha_2}{4\pi} \frac{F^\phi}{M_{EX2}} \right)^2 C_2(i) \\ &+ 2 \left(\frac{\alpha_1}{4\pi} \left(b_1^{EX3} \; \frac{F^\phi}{M_{EX1}} + b_1^{EX2} \; \frac{F^\phi}{M_{EX2}} \right) \right)^2 C_1(i) + dQ_a^X M_2^2 \end{split}$$

- $dQ_a^X M_2^2$ is a possible D term contribution from an anomalous $U(1)_X$ that is proportional to GMSB.
- The large gravity contribution makes the scalar masses universal at the GUT scale.

The road to MSSM

Effect of ϵ_3

• We study the effect of threshold corrections on the spectrum of exotics as well as the low energy spectrum.

The figure represents the correlation for one particular model with $\vec{n} = (4, 2, (2, 1))$

Two Cases

Observable	Case 1 Case 2	
$m_{3/2}$	4 TeV	10 TeV
d	0	5
M_S	6.04×10^{17}	6.05×10^{17}
M_C	1.2×10^{16}	1.2×10^{16}
M_{EX1}	5.03×10^{13}	1.10×10^{14}
M_{EX2}	1.69×10^{13}	8.54×10^{13}
M_{GUT}	2.5×10^{16}	2.0×10^{16}
ϵ_3	-2.5 %	0 %
tan $oldsymbol{eta}$	7	4
mu	-206.217	-1932.930

MSSM Spectrum - Case 1

$$m_{3/2}$$
= 4 TeV, d = 0, ϵ_3 = -2.5 %

MSSM Spectrum - Case 2

$$m_{3/2}$$
= 10 TeV, d = 5, ϵ_3 = 0 %

Implications of latest results from LHC

- ➤ The main difference between the spectrum discussed here and CMSSM is the non-universality of gaugino masses.
- ▶ Kinematically, the signatures from this spectrum would be similar to CMSSM with heavy scalars.
- Results presented at EPS 2011 from ATLAS: Gluino masses of 200 GeV - 660 GeV ruled out for neutralino masses up to 160 GeV.
- ► These results heavily constrain the parameter space discussed here.

Summary

- We have a self-consistent spectrum generated from heterotic string theory with vector-like "exotic" particles mediating SUSY breaking.
- The threshold corrections at the GUT scale depend on the gaugino masses.
- A large region of the parameter space discussed here is ruled out by the latest results from LHC.

EXTRA SLIDES

Exotic Spectrum

Model	Hidden Sector		Exotic Matter Irrep	Name
1 A/B	SU(4) × SU(2)	brane	$2 \times [(3,1;1,1)_{1/3,2/3} + (\overline{3},1;1,1)_{-1/3,-2/3}]$	$v + \bar{v}$
	1	exotics	$4 \times [(1,2;1,1)_{0,*} + (1,2;1,1)_{0,*}]$	m + m
			$1 \times [(1,2;1,2)_{0,0} + (1,2;1,2)_{0,0}]$	y + y
8		1	$2 \times \left[(1,1;4,1)_{1,1} + (1,1;\overline{4},1)_{-1,-1} \right]$	$f^+ + \bar{f}^-$
		4 4	$14 \times \left[(1,1;1,1)_{1,*} + (1,1;1,1)_{-1,*} \right]$	$s^+ + s^-$
7		bulk	$6 \times [(3,1;1,1)_{-2/3,-2/3} + (\overline{3},1;1,1)_{2/3,2/3}]$	$\delta + \bar{\delta}$
		exotics	$1 \times [(3,1;1,1)_{-2/3,-1/3} + (\overline{3},1;1,1)_{2/3,1/3}]$	$d + \bar{d}$
			$1 \times [(1,2;1,1)_{-1,-1} + (1,2;1,1)_{1,1}]$	$\ell + \bar{\ell}$
2	SO(8) × SU(2)	brane	$4 \times [(3,1;1,1)_{1/3,*} + (\overline{3},1;1,1)_{-1/3,*}]$	$v + \bar{v}$
		exotics	$2 \times [(1,2;1,1)_{0,*} + (1,2;1,1)_{0,*}]$	m + m
			$1 \times [(1,2;1,2)_{0,0} + (1,2;1,2)_{0,0}]$	y + y
9		1	$2 \times \left[(1,1;1,2)_{1,1} + (1,1;1,2)_{-1,-1} \right]$	$x^{+} + x^{-}$
			$20 \times \left[(1,1;1,1)_{1,*} + (1,1;1,1)_{-1,*} \right]$	$s^{+} + s^{-}$
		bulk	$3 \times [(3,1;1,1)_{-2/3-2/3} + (\overline{3},1;1,1)_{2/3,2/3}]$	$\delta + \bar{\delta}$
		exotics	$1 \times [(3,1;1,1)_{-2/3,2/3} + (\overline{3},1;1,1)_{2/3,-2/3}]$	$d + \bar{d}$
			$1 \times [(1,2;1,1)_{-1,-1} + (1,2;1,1)_{1,1}]$	$\ell + \bar{\ell}$
			$3 \times [(1,2;1,1)_{-1,0} + (1,2;1,1)_{1,0}]$	$\phi + \bar{\phi}$

Anomaly Contributions

$m_{\tilde{\chi}^0}$ vs $m_{\tilde{g}}$

